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ABSTRACT
�is paper reports on novel statistical methodology, which has been

deployed by the commercial A/B testing platform Optimizely to

communicate experimental results to their customers. Our method-

ology addresses the issue that traditional p-values and con�dence

intervals give unreliable inference. �is is because users of A/B

testing so�ware are known to continuously monitor these measures

as the experiment is running. We provide always valid p-values

and con�dence intervals that are provably robust to this e�ect.

Not only does this make it safe for a user to continuously monitor,

but it empowers her to detect true e�ects more e�ciently. �is

paper provides simulations and numerical studies on Optimizely’s

data, demonstrating an improvement in detection performance over

traditional methods.

KEYWORDS
A/B testing, sequential hypothesis testing, p-values, con�dence

intervals

1 INTRODUCTION
Web applications typically optimize their product o�erings using

randomized controlled trials (RCTs); in industry parlance this is

known as A/B testing. �e rapid rise of A/B testing has led to the

emergence of a number of widely used platforms that handle the

implementation of these experiments [10, 20]. �e typical A/B test

compares the values of a parameter across two variations (con-
trol and treatment) to see if one variation o�ers an opportunity to

improve their service, while the A/B testing platform communi-

cates results to the user via standard frequentist parameter testing

measures, i.e., p-values and con�dence intervals. In doing so, they
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obtain a very simple “user interface”, because these measures isolate

the task of analyzing experiments from the details of their design

and implementation.

Crucially, the inferential validity of these p-values and con�-

dence intervals requires the separation between the design and

analysis of experiments to be strictly maintained. In particular, the

sample size must be �xed in advance. Compare this to A/B testing

practice, where users o�en continuously monitor the p-values and

con�dence intervals reported in order to re-adjust the sample size

of an experiment dynamically [14]. Figure 1 shows a typical A/B

testing dashboard that enables such behavior.

�is “peeking” behavior results because the opportunity cost of

longer experiments is large, so there is value to detecting true e�ects

as quickly as possible, or giving up if it appears that no e�ect will

be detected soon so that the user may test something else. Further,

most users lack good prior understanding of both their tolerance for

longer experiments as well as the e�ect size they seek, frustrating

a�empts to optimize the sample size in advance. Peeking early

at results to trade o� maximum detection with minimum samples

dynamically seems like a substantial bene�t of the real-time data

that modern A/B testing environments can provide.

Unfortunately, stopping experiments in an adaptive manner

through continuous monitoring of the dashboard will severely fa-
vorably bias the selection of experiments deemed signi�cant. Indeed,

very high false positive probabilities can be obtained—well in excess

of the nominal desired false positive probability (typically set at 5%).

As an example, even with 10,000 samples (quite common in online

A/B testing), we �nd that the false positive probability can easily be

in�ated by 5-10x. �at means that, throughout the industry, users

have been drawing inferences that are not supported by their data.

Our paper presents the approach taken to address this challenge

within the large-scale commercial A/B testing platform Optimizely.

We develop novel methodology to compute p-values and con�dence

intervals; our measures, which we call always valid, allow users to

continuously monitor the experiment and stop at a data-dependent

time of their choosing, while maintaining control over false positive

probability at a desired pre-set level. �is protects statistically naive

users, and lets all users leverage real-time data to trade o� the

detection power and sample size dynamically. As described in the

paper, our methods build on classical results in the sequential testing

literature in statistics. �e methods we describe were implemented

in the Optimizely platform in January 2015 as Optimizely Stats
Engine, and have been in use across all products including mobile,
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Figure 1: A typical results page inOptimizely’sA/B testing dashboard. �edashboard encourages users to continuouslymonitor
their experiments, by providing updated results on experiments in real-time.

web, and server-side testing; hundreds of thousands of experiments

have been run by thousands of customers since its launch.

In Section 2, we outline the basic A/B testing problem, as well

as the typical approach used today. In Section 3, we discuss why

continuous monitoring “breaks” the existing paradigm and leads

to invalid inference, and we propose a de�nition of always valid

p-values and con�dence intervals that admit valid inference despite

continuous monitoring of tests by users. In Section 4, we give the

approach taken in the Optimizely platform to compute these mea-

sures; in particular, they are derived from a novel generalization of

the mixture sequential probability ratio test (mSPRT) [16]. In Section

5, we empirically demonstrate that our approach both allows users

to control false positive probability, and improves the user’s ability

to trade o� between detection of real e�ects and the length of the

experiment (in an appropriate sense).

�e core of our solution is formulated for the basic A/B testing

problem with two variations (treatment and control). We conclude

in Section 6 by addressing challenges that arise for multivariate
testing, where users have many variations and metrics of interest

that they compare simultaneously. Multivariate testing immediately

gives rise to a severe multiple comparisons problem, where users

can overinterpret signi�cant results unless appropriate corrections

are applied [21]. In our deployment, always valid p-values are

combined with multiple hypothesis testing correction procedures to

provide a robust inference platform for experimenters, supporting

both continuous monitoring and multivariate testing.

2 PRELIMINARIES
In this section, we describe the typical approach for analyzing A/B

tests based on the frequentist theory of hypothesis testing, which

we refer to as �xed-horizon testing.

2.1 Experiments and decision rules
We begin by introducing two benchmark se�ings that we employ

throughout the paper: experiments that involve testing one varia-

tion against a known baseline, and experiments that compare two

variations against each other. �e former is used to motivate our

technical approach; the la�er is the scenario encountered in A/B

testing.

One-variation experiment. In a one-variation experiment, we

test a single variation (or treatment) against a known baseline. In

particular, we suppose independent observations from an exponen-

tial family X = (Xn )∞n=1

iid
∼ Fθ , where the parameter θ takes values

in Θ ⊂ Rp . In this se�ing, we consider the problem of testing a sim-

ple null hypothesis H0 : θ = θ0 against the composite alternative

H1 : θ , θ0. Here θ0 is the known baseline of comparison.

�roughout the paper, we index probability distributions by the

parameters; e.g., Pθ denotes the probability distribution on the data

induced by parameter θ .

Two-variation experiment. In a two-variation experiment or

A/B test, we test two variations (e.g., treatment and control, or

A and B) against each other. Here we observe two independent

i.i.d. sequences X and Y, corresponding to the observations on visi-

tors receiving experiences A and B respectively. In studying A/B

tests, we restrict the data model to the two most common cases en-

countered in practice: Bernoulli data with success probabilities µA

and µB (used to model binary outcomes such as clicks, conversions,

etc.); and normal data with means µA and µB and known variance

σ 2
(used to model continuous-valued outcomes such as time on

site). In this se�ing, we consider the problem of testing the null

hypothesis H0 : θ := µB − µA = 0 against H1 : θ , 0.

Decision rules. �e experimenter needs to decide how long to

run the test, and whether to reject the null hypothesis when the test

is done. We formalize this process through the notion of a decision
rule. Formally, a decision rule is a pair (T ,δ ), where T is a stopping
time that denotes the sample size at which the test is ended, and δ
is a binary-valued decision dependent only on the observations up

to time T , where δ = 1 indicates that H0 is rejected.
1

A stopping

time is any time that is dependent only on the data observed up to

that time; therefore, this de�nition captures the crucial feature of

decision-making in A/B tests that the terminal sample size may be
data-dependent.

Note that we allow the possibility that T = ∞. �is formalism is

allowed to capture the idea that in advance, we do not know how

long a user would be willing to run a test. Of course in practice,

1
Even more formally, let (Fn )

∞
n=1

denote the �ltration generated by observations up

to time n. �en in a decision rule, T must be a stopping time with respect to (Fn )
∞
n=1

,

and δ must be a (FT )-measurable binary random variable.
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users will not run tests inde�nitely. Accounting for this fact in our

inferential process plays an important role below. If T = ∞, we

assume δ = 0: if the test runs forever then de facto, the null is never

rejected.

2.2 Fixed-horizon testing
In this subsection we recap the approach typically used to run and

analyze A/B tests today, based on frequentist hypothesis testing.

�e textbook approach for experimental design, dating back to

the seminal work of R.A. Fisher [5], is as follows:

Step 1: Commit to a �xed sample size n. �is is a crucial point:

the statistical measures typically used to analyzed A/B tests are

computed under the presumption that the sample size was �xed in
advance. We refer to this approach as �xed-horizon testing.

Step 2: Choose a desired false positive probability α . Next, the

user chooses a desired control on the probability of Type I error or

a false positive, i.e., the probability under the null hypothesis of an

erroneous rejection. It is typical to use α = 0.05 in practice, i.e., a

desired signi�cance level of 1 − α = 95%.

Step 3: Collect n observations and compute the appropriate test
statistic. Preferred test statistics are ones which can control Type I

error with high power at each possible alternative: the probability

of correctly rejecting the null hypothesis, a�er having received n
observations.

Indeed, a well known result is that, in a one-variation experiment,

for data in an exponential family, there exist a family of uniformly

most powerful (UMP) test statistics, τn , with decision rules: reject

the null hypothesis if τn exceeds a threshold k(α) (see, e.g., [13],

Chapter 4). Perhaps the most common examples are the one- and

two-sample z-tests and t-tests, used for data assumed to arise from a

normal distribution with known or unknown variance respectively.

Step 4: Compute a p-value pn , and reject the null hypothesis if
pn ≤ α . Informally, the p-value is the probability under the null
hypothesis of �nding data at least as extreme as the observed test
statistic. If the p-value is small, that is considered as evidence that

the null hypothesis is likely false.

Formally, we de�ne the p-value at n as the smallest α such that

the α-level UMP decision rule rejects the null hypothesis:

pn = inf{α : τn ≥ k(α)}.

Since the p-value was computed assuming a �xed sample size n,

we refer to this as a �xed-horizon p-value.
Observe that the rule to reject when τn ≥ k(α) controls false

positive probability at level α . But this is only possible if, under

the null hypothesis, the event τn ≥ k(α) occurs with probability no

greater than α . �is is the sense in which the p-value captures the

probability of �nding data as extreme as the test statistic under the

null hypothesis.

�e last point (Step 4) is in large measure a reason for the popu-

larity of this paradigm, despite the obvious subtleties in appropriate

interpretation of frequentist hypothesis tests. �e decision-making

process using p-values is remarkably simple: it does not require

the user to understand any of the intricacies of the procedure that

led to the test statistic, and instead summarizes the outcome of

the experiment in a number that can be directly compared to the

desired probability of false positives. Further, p-values have a natu-

ral transparency property: di�erent individuals can have higher or

lower levels of α (corresponding to being less or more conservative),

and can make statistically valid decisions using the same observed

p-value.

We conclude with a de�nition that we employ in our later tech-

nical development. �at the family of UMP decision rules controls

Type I error may be stated as the following validity property on pn
for a one-variation experiment:

∀s ∈ [0, 1], Pθ0
(pn ≤ s) ≤ s; (1)

i.e., at �xedn, under the null hypothesis, the p-value is superuniform.

For a two-variation experiment, the same validity condition is the

following:

∀µA = µB , s ∈ [0, 1], PµA,µB (pn ≤ s) ≤ s . (2)

We refer to a sequence of p-values that satisfy (1) or (2) as a �xed-
horizon p-value process.

2.3 Con�dence intervals
Using a standard duality between p-values and con�dence intervals,

the same approach can be used to construct con�dence intervals as

well. In particular, consider the family of �xed-horizon tests δn (α)

for testing H0 : θ = ˜θ for each
˜θ ∈ Θ. �e 1 − α con�dence interval

In is the set of
˜θ that are not rejected. If the �xed-horizon test

controls Type I error, that translates into the following coverage

bound on the con�dence interval:

∀θ ∈ Θ, Pθ (θ ∈ In ) ≥ 1 − α . (3)

More generally, we call any data-dependent interval In that satis�es

the preceding bound a 1 − α con�dence interval for θ . (�e same

de�nition generalizes to two-variation experiments as well.)

Because of this duality, our technical development primarily

focuses on p-values; the corresponding hypothesis tests can be

used to construct con�dence intervals in the preceding manner.

3 ALWAYS VALID INFERENCE
Unfortunately, a key failure mode of the experimental approach

described in Section 2.2 is that it requires the user to commit to

the sample size in advance of running the experiment. �is is the

property that allows the use of optimal UMP decision rules in the

�rst place.

On the other hand, while they maximize power for the given n,

the power increases as n is increased, and so the user must choose

n to trade o� power against the opportunity cost of waiting for

more samples. A key feature of modern A/B testing platforms is

precisely that they enable the user to continuously monitor experi-

ments, allowing the user to adaptively adjust this trade o� based on

the observed data. �is behavior leads to favorable biasing of the

sample paths on which the user rejects the null hypothesis, which

in turn leads to substantial in�ation of the false positive probability.

Figure 2 illustrates the issue. �ere we simulate data in an A/B

test where in fact both treatment and control consist of Normal(0, 1)

data; we then test the null hypothesis that the mean is the same in

both variations. �e three curves show the realized Type I error if

the null hypothesis is rejected the �rst time the p-value falls below
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Figure 2: Type I error vs. run length with continuous moni-
toring. �e curves show the realized false positive probabil-
ity when the user rejects the �rst time the p-value crosses
the given α level.

the given level of α ; as can be seen, this data-dependent decision

rule using �xed-horizon p-values massively in�ates Type I error.
2

It can be shown theoretically that any �xed level of α is guar-
anteed to be crossed by the p-value under the null hypothesis, if

the experimenter waits long enough [19]. In other words, if the

null hypothesis is rejected the �rst time the p-value crosses α , with

increasing data the false positive probability approaches 100%!

�is section outlines a statistical approach that corrects for this

problem. Fundamentally, our premise is that users are right to want

to adaptively determine their sample size: there are opportunity

costs to longer experiments. We ask: how can we allow a user

to stop when they wish, while still controlling the false positive

probability at the level α?

3.1 Always valid p-values
�e �rst signi�cant contribution of our paper is the de�nition of

always valid p-values that control Type I error, no ma�er when

the user chooses to stop the test. �ese protect against adaptive

data-dependent choices of the sample size, and let the user trade

o� detection power and sample size dynamically as they see �t.

We de�ne always valid p-values for one-variation experiments; the

de�nitions extend naturally to the uniform validity required for

two variations.

De�nition 3.1. A sequence of �xed-horizon p-values (pn ) is an

always valid p-value process if given any (possibly in�nite) stopping

time T , there holds:

∀s ∈ [0, 1], Pθ0
(pT ≤ s) ≤ s . (4)

�e key di�erence from the condition (1) is the following: now

we imagine the user observes data as it arrives, and makes a choice

2
�e same occurs even if slightly more sophisticated approaches are used. For example,

suppose that the test is stopped the �rst time the p-value falls below α = 0.05, and

the calculated power at the observed e�ect size is above a �xed threshold (in this case,

0.8). �is is known as a “post-hoc” power calculation [7]. �is approach turns out to

be equivalent to rejecting the �rst time the p-value falls below a given, lower value of

α , and also signi�cantly in�ates the false positive probability.

of when to stop the experiment; this is the data-dependent stop-

ping time T . �e user then observes the p-value at this time. Our

requirement is that even though the p-value is viewed at a time

that is data-dependent, Type I error must still be controlled.

3.2 Sequential tests and always validity
In statistics, decision rules where the terminal sample size is al-

lowed to be data-dependent are commonly referred to as sequential
tests. In this section, we show how sequential tests can be used to

construct always valid p-values, and vice versa. Sequential analysis

is a mature �eld with roots dating back to [22], and it has gained

recent popularity for online experimentation [15] [1], especially in

connection to multi-armed bandits [18]. For history, methodology,

and theory, we direct the reader to the encyclopedic resource of

[6].

Formally, a sequential test is a nested family of decision rules

(T (α),δ (α)) parameterized by their Type I error rates 0 < α < 1

with the following properties:

(1) Each decision rule controls Type I error at the stated level :

Pθ0
(δ (α) = 1) ≤ α .

(2) �e decision rules are nested: T (α) is (almost surely) nonin-

creasing in α , and δ (α) is (almost surely) nondecreasing in

α . �at is, the less conservative rules necessarily terminate

faster and make more rejections.

�e following theorem shows that sequential tests and always

valid p-values are closely related; the proof can be found in the

Appendix.

Theorem 3.2.

(1) Let (T (α),δ (α)) be a sequential test. �en

pn = inf{α : T (α) ≤ n,δ (α) = 1} (5)

de�nes an always valid p-value process.
(2) For any always valid p-value process (pn )∞n=1

, a sequential
test (T̃ (α), ˜δ (α)) is obtained from (pn )∞n=1

as follows:

T̃ (α) = inf{n : pn ≤ α }; (6)

˜δ (α) = 1{T̃ (α) < ∞}. (7)

(3) Let (T (α),δ (α)) be any sequential test where T = ∞ when-
ever δ = 0. If (pn )∞n=1

is derived as in (5), then the construc-
tion (6)-(7) recovers the original sequential test: (T̃ (α), ˜δ (α)) =
(T (α),δ (α)).

Note that part (3) says the simple rule “reject when the p-value

is ≤ α” implements the original sequential test. While the p-value

de�ned in part (1) of the theorem is not unique for satisfying part (3),

it is the unique such process that is (almost surely) monotonically
nonincreasing in n, which increases interpretability (see Section

4.4).

3.3 Con�dence intervals
We conclude by extending always validity to con�dence intervals.

Always valid con�dence intervals may be constructed from always

valid p-values just as in the �xed-horizon context.

De�nition 3.3. A sequence of �xed-horizon (1 − α)-level con�-

dence intervals (In ) is an always valid con�dence interval process if
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for any stopping time T , the corresponding interval IT has 1 − α
coverage of the true parameter: for all θ ∈ Θ, Pθ (θ ∈ IT ) ≥ 1 − α .

�e following proposition follows immediately from the de�ni-

tions.

Proposition 3.4. Suppose that, for each ˜θ ∈ Θ, (p ˜θ
n ) is an always

valid p-value process for the test of θ = ˜θ . �en In =
{
θ : pθn > α

}
is

an always valid (1 − α)-level CI process.

4 CONSTRUCTING ALWAYS VALID P-VALUES
In light of �eorem 3.2, one might ask: if always valid p-values

can be constructed from any sequential test, what value do these

p-values o�er over implementing the best sequential test for the

experimenter directly? In particular, given the user’s choice of Type

I error constraint α and her desired balance between power and

sample size (suitably de�ned, cf. [6]), we could choose a sequential

test from the literature that optimizes her objective. But for an A/B

testing platform, there is a fundamental problem with this approach:

each user wants a di�erent trade o� between power and sample size!
Some users are willing to wait longer than others. Always valid

p-values let the user make the trade o� for herself.

In this section, we describe the particular family of sequential

tests we use to construct always valid p-values in the Optimizely

platform: the mixture sequential probability ratio test (mSPRT). In

Section 5, we show that mSPRTs are a judicious choice that enables

users with heterogeneous needs to trade o� power and sample size

e�ectively.

4.1 �e mixture sequential probability ratio
test (mSPRT)

mSPRTs have been studied in the literature for one-variation experiments[16];

our extension to two-variation experiments is described below. �e

test is de�ned by a “mixing” distribution H over Θ, where H is

assumed to have a density h that is positive everywhere. Using H ,

we �rst compute the following mixture of likelihood ratios against

the null hypothesis that θ = θ0:

ΛH,θ0

n =

∫
Θ

n∏
m=1

fθ (Xm )

fθ0
(Xm )

h(θ )dθ . (8)

Intuitively, ΛH,θ0

n represents the evidence against H0 in favor of a

mixture of alternative hypotheses, based on the �rst n observations.

Now the mSPRT is fairly simple: given a desired false positive

probability α , it stops and rejects the null hypothesis at the �rst

time T = TH (α) that ΛH,θ0

T ≥ α−1
; if no such time exists, it never

rejects the null hypothesis. Using standard martingale techniques,

it can be shown that this sequential test controls Type I error at

level α [19].
3

3
�e basic idea is to observe that under the null hypothesis, the likelihood ratio at any

θ is a martingale, and therefore Λ
H ,θ

0

n is also a martingale. �e result then follows by

applying the optional stopping theorem.

4.2 p-values and con�dence intervals from the
mSPRT

We convert the mSPRT to always valid p-values and con�dence

intervals using �eorem 3.2 and Proposition 3.4. In particular,

suppose we are given the sequence ΛH,θ0

n . �en by �eorem 3.2,

the associated always valid p-values are seen to satisfy the following

simple recursion:

p0 = 1; pn = min{pn−1, 1/Λ
H,θ0

n }. (9)

In particular, note that this means always valid p-values can be

easily computed in a streaming fashion, making them amenable to

implementation in a real-time A/B testing dashboard.

Applying Proposition 3.4 to these p-values, we �nd that always

valid con�dence intervals are given by the following recursion:

I0 = Θ, In = In−1 ∩ { ˜θ : Λ(H, ˜θ ) ≥ α−1}. (10)

For data generated by general exponential families, as long as an

appropriate conjugate prior is chosen as H , computation of ΛH,θ0

n
(and thus both always valid p-values and always valid con�dence

intervals) is inexpensive. For data generated from a normal dis-

tribution (i.e., where Fθ = N (θ ,σ 2)) it turns out that if we use a

normal mixing distribution centered at the null hypothesis (i.e.,

H = N (θ0,τ
2), then we obtain a closed form formula for ΛH,θ0

n :

ΛH,θ0

n =
σ

√
σ 2 + nτ 2

exp

{
n2τ 2(X̄n − θ0)

2

2σ 2(σ 2 + nτ 2)

}
.

(Here X̄n is the sample mean up ton.) �is formula can then be used

to compute both always valid p-values and con�dence intervals in

a streaming format.

4.3 �e mSPRT for A/B tests
�e second major contribution of our paper is a novel generalization

of the mSPRT to A/B tests. To get an mSPRT for A/B testing, we

need to de�ne a mixture likelihood ratio Λ̃H,θ0

n for two-variation

experiments, as a function of the data X1, . . . ,Xn ,Y1, . . .Yn .

We start by considering normal data. In this case, note that for

any µA and µB , Zn = Yn − Xn ∼ N (θ , 2σ 2). We can thus simply

apply the one-variation mSPRT to the sequence {Zn }; this leads to

the following de�nition:

Λ̃H,θ0

n =

√
2σ 2

2σ 2 + nτ 2
exp

{
n2τ 2(Ȳn − X̄n − θ0)

2

4σ 2(2σ 2 + nτ 2)

}
, (11)

where θ0 is the di�erence of means in the null hypothesis. We

show that the associated p-value process and con�dence intervals

(de�ned as in one-variation experiments) are always valid; see

Proposition 7.1 in the Appendix.

For binary data, we consider the one-variation experiment where

each observation is a pair (Xn ,Yn ) and θ is unknown but µ is �xed.

�e mixture likelihood ratio in that case reduces to the mixture

likelihood ratio based on any su�cient statistic for θ in this one-

variation model. We note that for any µ, Ȳn − X̄n is asymptotically

su�cient with asymptotic distribution N (θ ,Vn/n), where:

Vn = X̄n (1 − X̄n ) + Ȳn (1 − Ȳn ).

�is distribution resembles that of the su�cient statistic Z̄n in the

normal case with 2σ 2 = Vn , and so by analogy we use the following
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mSPRT:

Λ̃H,θ0

n =

√
Vn

Vn + nτ 2
exp

{
n2τ 2(Ȳn − X̄n − θ0)

2

2Vn (Vn + nτ 2)

}
, (12)

where again θ0 is the di�erence of success probabilities under the

null hypothesis (if Vn = 0, we let Λ̃H,θ0 = 1).

Since the approximations hold only at large n, exact always valid-

ity is not achieved, but simulations demonstrate that approximate

Type I error control is obtained at small α where large sample sizes

are necessary to reject H0. In a companion technical report [9],

we provide a more conservative variant of this mSPRT for two-

variation binary data, which is proven to control Type I error to

leading order as α → 0.

4.4 Implementation details
Across all of Optimizely’s products, we implement always valid

p-values and con�dence intervals using the de�nitions in (11) and

(12) respectively, substituted into the expressions in (9) and (10)

respectively.

Some slight modi�cations are required in the practical implemen-

tation. For normal data, we must use a plug-in empirical estimate

for σ 2
; simulations show that this does not impact the Type I error

for small α . Further, there are some continuous-valued metrics such

as “$ spend” where the distribution of responses has a heavy right

tail, making a normal model inappropriate. For these, a mixture of

likelihood ratios are computed under a more general model that

can �t this skewness.

We report statistical signi�cance at time n; this is 1 − pn , shown

in Figure 3. Signi�cance begins at zero and increases monotonically,

reaching 100% asymptotically if a true di�erence exists. �is has an

intuitive bene�t: as evidence only increases over time, the level of

signi�cance (and hence the user’s con�dence in inference) should

not decrease over time. Similarly, the con�dence intervals narrow

monotonically.

However, despite its advantages, this monotonicity does present

an additional user interface challenge. In a proportion α of tests,

the con�dence interval will eventually lie entirely above or below

the true di�erence and will never recover, even as the point estimate

Ȳn − X̄n leaves the con�dence interval and approaches the truth.

Shi�s in the underlying conversion rates during the experiment

can amplify this e�ect.
4

In our deployment, we address this issue

with a heuristic “reset policy”, which forces a reset in our inference

whenever the point estimate leaves the con�dence interval: the

reported statistical signi�cance is reset to zero at that time, the

con�dence interval returns to the entire real line, and then the

iterations in (9) and (10) begin anew. �is policy only ever makes

the p-values larger and the con�dence intervals wider, so it does not

lead to any additional Type I errors. For some choices of stopping

time, however, the policy does reduce power.

5 DETECTION PERFORMANCE
Suppose that a user stops the �rst time that our always valid p-value

process crosses α . We know their Type I error is controlled — but

what about detection of real e�ects? In this section, we show always

4
Neither �xed-horizon nor always valid measures o�er validity guarantees in this case,

but the former remain visually reasonable.

valid p-values generated using the mSPRT possess several desirable

properties from this perspective. First we discuss several theoret-

ical optimality properties of the mSPRT. Second, we empirically

evaluate detection performance under our approach and show that

it is o�en preferable to �xed-horizon testing.

5.1 Optimality
�eoretical results in the literature establish asymptotic optimality

properties of mSPRTs. Informally, these results imply that our

always valid p-values perform well for users who prioritize high

detection over small sample sizes. �e most basic such result is that

any mSPRT is a test of power one [17]; i.e., under any alternative θ ,
θ0, the test is eventually guaranteed to reject the null hypothesis,

if the user is willing to wait long enough. Further, [12] and [11]

establish that the power converges to one quickly as the sample

size grows.
5

But of course, no user can literally wait forever. To formalize

this, we suppose that a user’s impatience is captured by a failure
timeM , so the user stops the �rst time the always valid p-value falls

below α , or at time M , whichever comes �rst. �is implements the

mSPRT truncated to time M . Our companion technical report [9]

proves the following key result: �e mSPRT truncated atM achieves
signi�cance earlier on average than competing tests that o�er the
same power, for small α – despite the fact that mSPRT-based p-values
are computed without knowledge ofM .

In this sense, our always valid p-values provide an “interface”

that allows users to nearly optimally trade o� detection perfor-

mance and sample size based on their own preferences.

5.2 Choosing the mixing distribution
�e mSPRT as de�ned in (11) requires a key parameter as input: the

mixing variance τ (recall the mixing distribution is H ∼ N (θ0,τ
2)).

Existing theory does not reveal how best to choose this mixture.

Intuitively, sinceΛH,θ0

n represents the evidence in favor of a mixture

of alternatives θ , θ0 weighted by θ ∼ H , we would expect the

best average performance when the mixing distribution H matches

the distribution of true e�ects across the experiments a user runs.

Our companion technical report establishes this approximately for

normal data and a true prior G = N (0,τ 2

0
) on θ , under appropriate

regulatory conditions [9].

At the time of our deployment, customers of Optimizely could

purchase subscriptions at one of four tiers: Bronze, Silver, Gold

or Platinum. We obtained a prior G on e�ect sizes separately for

each tier by randomly sampling 10,000 two-variation, binary data

experiments that had been run previously on Optimizely. �e

reason for constructing distinct priors across tiers is that customers

in higher tiers tended to be further into optimizing their website

and so were typically chasing smaller e�ects. �e distribution of

e�ects seen in each tier was indeed approximately normal, and we

5
For instance, [11] proves the asymptotic Bayes optimality of mSPRTs when the cost to

the experimenter is linear in the false positive probability, the power, and the number of

observations, and the relative cost of observations approaches zero. For our purposes,

given a prior for the true e�ect θ ∼ G under the alternative H1 , this result implies that

if the user prioritizes power and her costs take this simple linear form, our p-values

o�er her near optimal performance in expectation over the prior, provided she chooses

α optimally.
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Figure 3: �e top chart shows conversion rates over time in an A/B test over time, as displayed in the Optimizely dashboard.
�e bottom chart shows statistical signi�cance, computed using the always valid p-values described in Section 4.3.

choose τ by ��ing a centered normal distribution a�er appropriate

shrinkage via James-Stein estimation. [8]

5.3 Improvement over �xed-horizon testing
We also used the same sample of 10,000 experiments to show

that our p-values typically deliver signi�cance faster than a �xed-

horizon test, whose sample size is chosen to obtain 80% average

power over the prior in each tier. In Figure 4, the red curve shows

that in most of the experiments, the mSPRT achieves signi�cance

before that sample size.

Of course, the user might choose di�erent �xed-horizons for

each experiment if she had additional contextual information that

the prior does not capture. �e black curves in Figure 4 suppose

that the user can estimate the true e�ect size up to some given

relative error, and they compare the expected sample size of the

mSPRT in each experiment against the �xed sample size she would

choose to achieve 80% power at her estimate. Now we see that

�xed-horizon testing outperforms the mSPRT if she can estimate

the e�ect size very accurately. However, since a relative error below

50% is rarely achievable, the mSPRT will typically perform be�er

in practice.

Finally, in Figure 5, we use simulations to evaluate our detection

performance for users who may give up for failure at time M (as de-

scribed above). We consider two-variation experiments with binary

data with the true θ drawn from a standard normal prior, and with

τ = 1. For four levels of power, β , we choose M so that the average

power of the truncated mSPRT equals β , and compare the distribu-

tion of sample sizes against the �xed-horizon test achieving that

same average power. Since the mSPRT is optimized primarily for

users who prioritize detection over sample size, it is outperformed

by �xed-horizon testing when β is small. However, for any user

who seeks moderate power, the mSPRT p-values generally o�er

faster detection than �xed-horizon testing.

6 MULTIVARIATE TESTING
�roughout the paper, we have assumed that there are at most two

variations under consideration, and only one metric of interest. In

fact, when a user initiates an experiment on Optimizely (or most

any A/B testing platform), she will o�en specify many treatment

variations that will be compared against a baseline variation, and

each visitor in the experiment is randomized between these mul-

tiple alternatives. Further, she will o�en specify several goals on

which the variations are to be compared , and each visitor’s re-

sponses across all of these goals are measured simultaneously. Each

comparison de�nes a two-variation sub-experiment, and the plat-

form displays the results of all sub-experiments a single dashboard

(as in Figure 1).

Tests with many goals and variations are called multivariate tests.
In such a test, when the user a�empts to draw inferences across

every variation and goal in her experiment, simultaneous false

positives in multiple sub-experiments can highly distort her conclu-

sions. As the dashboard in Figure 1 suggests, the user’s a�ention

will be drawn to those results which are signi�cant; as the absolute

number of false positives increases with the number of goals and

variations, the user runs the risk of acting on illusory e�ects. �is

is known as the multiple comparisons or multiple hypothesis testing
problem [21].

We conclude the paper by demonstrating how we can combine

our always valid measures with methodology from the multiple

hypothesis testing literature that protects users from this risk. �e

resulting Optimizely results page allows users to continuously mon-

itor tests with many variations and goals, and yet remain con�dent

in the inferences drawn.

�ere are two well-studied methods in the multiple testing liter-

ature for testing an arbitrary numberm of hypotheses usingm cor-

related data sets (note that observations across our sub-experiments

are correlated): the Bonferroni correction and the Benjamini-Hochberg
(BH) procedure. �e Bonferroni procedure is designed to control the

family-wise error rate (FWER): the probability that any true nulls

are rejected [4]. �e Benjamini-Hochberg procedure controls the

false discovery rate (FDR): the expected proportion of rejected null

hypotheses that are in fact true [2].

Each procedure operates as follows. �e inputs are the computed

p-values for the m hypothesis tests, p1, . . . ,pm . �e outputs are

“corrected” values, one per hypothesis, that we refer to as q-values:
q1, . . . ,qm . �e policy of rejecting the null hypothesis in test j if

qj ≤ α controls the FWER at level α (using the Bonferroni q-values)
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Figure 4: �e empirical distribution of sample size ratios between the mSPRT and �xed-horizon testing over 10,000 randomly
selected experiments, divided up by subscription tier.

Figure 5: �e simulated distribution of sample sizes for the mSPRT truncated to give four di�erent average powers. �e
average run-time (dashed) and truncation sample size (dotted) are compared against the �xed-horizon (solid) that achieves
the same average power.

and controls the FDR at level α (using the BH q-values). �e exact

formulae for these computations are given in the Appendix.

A great virtue of the fact that our approach to continuous mon-

itoring employs p-values is that we can directly leverage these

methods for multiple testing corrections as well. For either method,

the computations are straightforward; we display q-values on Op-

timizely’s dashboard computed directly from the mSPRT-derived

always valid p-values. Monotonicity of the p-values ensures mono-

tonicity of the q-values under either the Bonferroni or BH procedure.

Most importantly, it is straightforward to demonstrate that the Bon-

ferroni or BH q-values obtained from any collection of always valid

p-values control FWER or FDR (respectively) in the presence of

arbitrary continuous monitoring.

In general, there are situations in A/B testing practice where

Bonferroni q-values, BH q-values, or even uncorrected p-values

may help users to make decisions most e�ectively. �e dilemma

is that FWER control provides the safest inference, but Bonferroni

o�ers less detection power at any given sample size than BH, which

itself reduces power compared with no correction. From user re-

search, we decided on FDR control as it appeared to best re�ect

how Optimizely’s customers intuited their results when making

decisions: they focused mostly on the signi�cant results displayed

on the dashboard and expected most (but not all) of these to be

accurate.
6

6
In some cases, however, users include many goals but make decisions primarily on

one goal. We additionally allow to the user to select a “primary goal” and provide FDR
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control on that goal in isolation. BH q-values are then computed for all other goals

together.

7 APPENDIX
Proof of Theorem 3.2. Let T be a stopping time. Nestedness

of the sequential tests implies that, for any s ∈ [0, 1], ε > 0:

{pT ≤ s} ⊂ {T (s + ε) ≤ T ,δ (s + ε) = 1} ⊂ {δ (s + ε) = 1}.

∴ Pθ0
(pT ≤ s) ≤ Pθ0

(δ (s + ε) = 1) ≤ s + ε , and so the result

follows on le�ing ε → 0. For the converse, it is immediate from the

de�nition that the tests are nested. For any ε > 0

Pθ0
(δ (α) = 1) = Pθ0

(T (α) < ∞) ≤ Pθ0
(pT (α ) ≤ α + ε) ≤ α + ε

where the last inequality follows from the de�nition of always

validity. Again the result follows on le�ing ε → 0. �

Proposition 7.1. For normal data, the p-value and con�dence
interval associated with this two-sample mSPRT are always valid.

Proof. Given any µA, µB with θ = µB − µA, the distributions of

these p-value and con�dence interval processes under PµA,µB are

equal to the distributions of the one-sample mSPRT p-value and

con�dence interval processes based on (Zn ) under Pθ . �

7.1 Computing q-values
�e formulae to compute Bonferroni or BH q-values from current

p-values p1, ...,pm are as follows.

For the Bonferroni correction, we de�ne qi = min{mpi , 1} for

each hypothesis i .
For the BH procedure, we derive the q-values as follows. Let

p(1) ≤ · · · ≤ p(m) denote the p-values placed in ascending order.

Let q(m) = p(m), and for i =m − 1, ..., 1, de�ne:

q(i) = min

{
m(

∑i
j=1

1/j)p(i)

i
,q(i+1)

}
.

Note that we include the term

∑i
j=1

1/j to account for the fact that

the p-values may be correlated (at the very least, since the user’s

stopping time induces some correlation). See [3] for details.
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